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It is shown that the problem of the finite propagation speed of disturbances of the impurity concentration in a multicomponent 
fluid may be related to the corresponding separation of energy into the internal and macroscopic. If the total kinetic energy of 
the mixture of components combined with the potential energy of external forces is taken as the macroscopic energy, then, within 
the framework of the linear local equilibrium thermodynamics of irreversible processes, the diffusion is described by equations 
of the hyperbolic type. Because of the relative shortness of the local relaxation time for fairly large-scale disturbances, the equations 
are simplified to the usual diffusion equations of the parabolic type. © 2001 Elsevier Science Ltd. All rights reserved. 

The physical concepts concerning the finiteness of the propagation speed of signals often make it necessary to 
revise the usual theories of diffusion and heat conduction, the conclusions of which contradict the finiteness expected 
[1, 2]. It seems that a hyperbolic diffusion equation (the telegraph equation) free from the paradox of an infinite 
speed was first obtained in an analysis of random walks by Fock as far back as 1926 [3]. The necessary thermodynamic 
revision occurred much later and involved a generalization of the thermodynamics of irreversible processes that 
and been formulated by that time. However, it was often formal [4] or based on the axiomatic introduction of a 
memory into the relations between the thermodynamic fluxes and forces [5], upon the introduction of  dissipative 
thermodynamic fluxes into a number of the parameters determining the thermodynamic state [6] and, finally, upon 
the formal axiomatics of "rational thermodynamics" [7]. Below it will be shown that a significant generalization 
of the thermodynamics of irreversible processes is not necessary in this case - it is sufficient, when using the 
traditional local equilibrium thermodynamics of irreversible processes in the theory of continuous media, to apply 
a non-standard and, it seems, a more acceptable splitting of the total energy density of the mixture into kinetic 
and internal. The question as to a similar improvement in traditional construction with the kinetic energy of diffusion 
separated from the total energy, rather than the kinetic energy of the centre of mass of the mixture, was correctly 
raised in [8] (see Chapter III, §4); however, the corollaries of such a splitting were not analysed, in particular the 
hyperbolic nature of the corresponding diffusion equation. 

For each point mass of a multi component continuous medium, the individual components are characterised 
by mass densities p(,), velocities V(n), and so on (to avoid confusion between the numbers of the components of 
the medium and the vector/a/rid tensor indices, we will enclose the former in parenthesis). We will confine ourselves 
to an examination of fluid mixtures with two components without chemical reactions. Then the total density and 
momentum are obtained by summation, in which n takes values of 1 and 2, and the equations of  conservation of 
mass of the individual components and of the mixture are written in the form (below, the summation sign represents 
summation with respect to the components) 

~PCn) ~ + div(pv) = 0 ~t +div(p(n)V(n))=O' 

9 = Y Oen~, 9v = 5". p(n~v¢.~ 

When the mass concentrations of the components and the relative velocities (with respect to the motion of the 
centre of mass) and "diffusion fluxes" 

ctn)~-ptn)lP,  Wtn)--v~n)-v, Jtcn)mPtn)Wtn ) (1) 

are used, they can be rewritten as follows: 

dctn) +divj~n) = ~(9c(n) ) . . . .  c . 
P dt t)t +Onv(pctn)v+J~n))=O' Y.c¢~) = I, Y--J~n) = 0 (2) 
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The main balance relations, reflecting the other laws of conservation when there are no sources, can be written 
in a similar differential form. Thus, the balance momentum for the individual components and for the mixture as 
a whole is represented by the equations (below, external force sources will be neglected for simplification) 

a(p(n)V(n)i ) 
4- (p(n)U(n)i U(n)a --X(n)ia) = 0 

at axot 

d v i  a'~oti a ( p v i )  + ~-~-(pvi pot - ,~ot i )=0 (3) 
P ~ ax~ = at 

"~/j ---- E('~(n) 0 -- W ( n ) i W ( n ) j )  = - - P ~ i j  + O i j  

Although the problem of writing the balance of the total energy density can be solved just as simply, if e and je 
are understood as the total specific energy and its flux, and e(n), J~n) and P~n) are understood as the specific energy, 
the flux and production of the component n 

aPtn)e(n) • e _ e de 
at +dlv{J(m+P(n)e(n)V(n)}-P(n) '  P"~t +divJe =0  

pc= Zp(n)e(n ), je =Y'{J~n) +P(n)e(n)W(n)} ' ,£p(e =0 

in a consideration of the balance of internal energy on the basis of the given relations, alternative versions arise 
when the kinetic energy is separated from the total energy of the mixture. If, as usual, the kinetic energy of the 
mixture is understood to be the kinetic energy of the centre of mass 902/2, then subsequent thermodynamic analysis 
leads to the well-known Fick's law [8-10]. The diffusion process is then described by partial differential equations 
of the parabolic type, and here the paradox of unlimited velocities of small large-scale disturbances arises. However, 
attention must be drawn to the possibility of a different choice, and here the total kinetic energy of the mixture is 
separated from the energy density. 

/~p(n)v2n ) = / O r  2 I 2 +~YP(n )W(n )  

as characterizing the macroscopic motion (see the brief discussion of this in [8]). Then, for the internal energy 
reflecting the energy of thermal motions and short-range interatomic interactions, the following balance relation 
will be satisfied. 

P . +div  Jq = xaf~eot~ - ~, dt 

, ,  ~ _ ~ .a¢. _ _  
2 wt")w(n)i" eij 2 [  axj  a x j ]  

It is obtained by subtracting from the equation of the total energy the equation of the kinetic energy, and the latter 
is a simple corollary of equations of motion (3) when there are no external forces. 

These corollaries of the conservation laws must be supplemented with relations of a thermodynamic nature. 
Within the framework of the normal hypothesis of local thermodynamic equilibrium of a flowing medium, these 
are primarily relations for the functions of state, for example, for the internal energy 

e = E(s,p,c I ,c 2 ), dE = Tds + pp-2dp + Y.l.t(n)dc(n ) 

The multicomponent nature of the medium is reflected, apart from the dependence of the state on the 
concentrations of the components, in the appearance of conjugate chemical potentials la(,) in the differential Gibbs 
relation. The single-temperature approximation used here to describe the two-component mixture does not 
contradict singling out the kinetic energy of diffusion from the total energy employes above. From the viewpoint 
of kinetic theory, this temperature predetermines the average velocities of the thermal motions of the molecules 
of each of the components, while the internal energy stems from the statistical spread of their velocities about 
these average values. Thus, it is natural when determining the internal energy to separate out from the total energy 
the sum of the kinetic energies of the components of the mixture, rather than the energy of their centre of mass. 

Since there are relations between the concentrations and fluxes of the components, reflected in formulae (2), 
it is convenient to exclude one of the components from explicit consideration, taking the other to be the "impurity 
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in solution" of concentration c - c ( 1 ) ,  and also to introduce the following altered notations 

J-J~l), ia-Ia(I)-la(2), w;w(I)-w(2)=v(I)-V(2) (4) 

Then the above equation of internal energy balance, together with the slightly simplified Gibb's relation 

de. = Tds + pp-2dp + p.dc 

and the mass balance equations, enables us to write the equation of entropy balance 

p-.~t +div jS = ps>~o. Tjs = j q - i a J  

Tps=f f~ l~e~l~-JS .VT-J  • Via+ +V w0)-w(2) + O~eota 
2 

where ,is and ps are the flux and production of entropy. 
The non-negative entropy production here is the sum of bilinear products of the scalar, vector and tensor 

thermodynamic fluxes an/3, -Is, J and ~j and the thermodynamic forces of the corresponding tensor dimensionality 
eaa , VT, Via + dw/dt and e~j. As usual, spherical parts are isolated from the second-rank tensors here, and the 
remaining deviator parts are denoted by the same letters with primes. Assuming the deviation of the system from 
thermodynamic equilibrium to be small, a linear relations should exist between them. To this accuracy, in the 
penultimate expression for the thermodynamic force we will omit the non-linear expression with a gradient of the 
kinetic energy of diffusion V(w~l) - w~))/2. Since, in an isotropic medium, cross-relations between the characteristics 
of different tensor dimensionality in a linear approximation are impossible, then (taking into account the Onsager 
symmetry relations for vector effects), we obtain the relations 

Ocm = 3;el~l~, O b = 2rle~ 

TP' = ;e2et + 21](e~) 2 +T(VT)2 +lJ'j~>0'~t ~ . r _  ~2(x T 

from which it can be seen that, in the case of an isotropic fluid, the multicomponent nature in the absence of chemical 
reactions has no effect on viscous phenomena, and the flow of the fluid will be described by the same Navier-Stokes 
equations as for a single-component medium. Viscous processes also have no direct inverse effect on vector (diffusion 
and heat conduction) and scalar thermodynamic processes. 

The requirement that the quadratic form of entropy production must be non-negative means that the two 
coefficients of viscosity, the thermal conductivity and a further additional coefficient must be non-negative, i.e. 

~>0, 11t>0, ×~>0, ¢x~>0 (6) 

It is convenient to rewrite the vector thermodynamic relations obtained, bearing in mind the nature of the 
dependence of chemical potential on the pressure, temperature and impurity concentration [10], in the slightly 
transformed form 

0 o (7, 
dt ~, T p J p ~,acJp.r p c ( I - c )  

j~ = ~ - J - T V T ,  J = p c ( I - c ) w  

The latter linear relation between the impurity flux and the difference in the velocities of the components follows 
from relations (1), (2) and (4). By virtue of the fact that the coefficient ~ indicated above is non-negative, taking 
into account the corollary of thermodynamic stability (aia/ac);,r > 0 [10], the diffusion coefficient and the local 
relaxation time of the impurity flux should be non-negative: 

D~>0, 0 t>0  

The thermal diffusion and pressure diffusion coefficients k r and kp have no constrains of this kind. 
If the simplest case of a homogeneous fluid at rest with small changes in the impurity concentration and slight 
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changes in pressure and temperature is considered, the kinetic coefficients can be assumed to be constant. Then, 
using relations (2) and (7), for the impurity concentration we obtain the telegraph equation 

0~2c +3c = OAc 
c)t 2 ~t 

i.e. an equation of the hyperbolic type with a finite speed propagation of disturbances. From dimensional 
considerations, in this case the characteristic scales of time 0, length f0-D and velocity ~DT0 are singled out. 
Disturbances with smaller space scales propagate at such a velocity, decay everywhere with the same characteristic 
time. For larger-scale disturbances (L2/D ~> 0), local relaxation ends, and we have the normal spatial diffusional 
spreading. The telegraph equation in this case is converted into the well-known diffusion equation of the parabolic 
type. The diffusion relaxation time is normally very short in the case of a mixture at the molecular level, since it 
reflects the finiteness of the short free path time (a derivation of the generalized diffusion equation by an asymptotic 
analysis of the system of Boltzmann kinetic equations for a mixture of gases taking into account changes in the 
distribution functions in such times was given earlier [11, 12]). Its magnitude proves to be much greater in cases 
of a large-scale inhomogeneous supermolecular structure of the components of the mixture. 

This  research  was s u p p o r t e d  by the  Russ ian  F o u n d a t i o n  for  Basic  R e s e a r c h  (99-01-00435). 
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